Hemodynamic Management

Hemodynamic Management

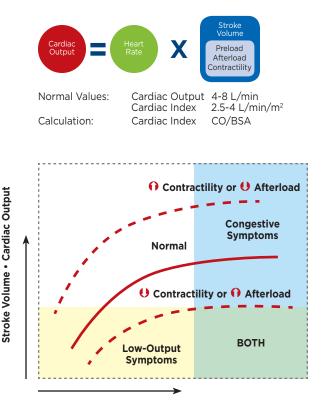
This pocket reference includes information for nurses on:

- Hemodynamic response
- Factors affecting:
 HR
 - Preload

- Afterload
- Contractility

- Oxygenation
- Functional Hemodynamic Measurements

NOTE: This pocket card is for quick reference only. Please review and follow your institutional policies and procedures before clinical use.


AMERICAN ASSOCIATION ^dCRITICAL-CARE NURSES

To order more cards, call 1 (800) 899-AACN or visit www.aacn.org.

Prod #400751 REV 03/19

Copyright ©2019 American Association of Critical-Care Nurses

Hemodynamic Response

Pulmonary Artery Occlusion Pressure (PAOP) Left Ventricular End-Diastolic Pressure (LVEDP)

Hemodynamic Response

Stroke Volume (SV): 50-100 mL/beat Stroke Volume Index (SVI): 30-60 mL/beat/m² Ejection Fraction (EF): > 60%

Heart Rate

• Adult/Adolescent • School Age (6-12 y) • Preschool (3-5 y)	Normal 60-100 beats/min 70-118 beats/min 80-120 beats/min	Values: • Toddler (1-2 y) • Infant (1-12 mo) • Neonate (0-1 mo)	98-140 beats/min 100-180 beats/min 100-205 beats/min
Increa	ased	Decre	eased
 Mechanism/Effect Sympathetic nervous system stimulation in response to stressful stimuli Compensatory mechanism for decreased CO and/or decreased SV Cardiac rhythm disorder from increased excitability of cardiac pacemaker cells 		 Mechanism/Effect Parasympathetic nervous system stimulation (vagal stimulation) Compensatory mechanism for increased blood pressure Cardiac rhythm disorder from decreased excitability of cardiac pacemaker cells 	
Causes Sympathetic stimulation (fear, pain, anxiety, stress) Exercise (physical activity) Decreased blood volume (preload) Increased vascular tone (afterload) Hypermetabolic states (fever, hyperthyroidism) Hypoxia and hypercarbia Conditions causing myocardial excitability, increased conduction (medications, cardiac cellular damage/edema) Medications and stimulants (caffeine, nicotine, cocaine) Accessory cardiac conduction pathways (re-entry phenomenon)		Causes Cardiac conduction defect Vagal stimulation (intubation, suctioning, nasogastric tube placement, vomiting, Valsalva maneuver, diver's reflex, carotid pressure) Relaxed state (sleep, sedation) Severe hypoxia Conditions that cause decreased myocardial excitability Neurogenic (Cushing's triad, increased intracranial pressure, anoxic injury) Myocardial tissue damage Normal variation (physical fitness) Medications that cause bradycardia (tricyclic antidepressant overdose, digoxin)	
 Treatment Correct sympathetic stimulus (control pain/anxiety, decrease physiologic stressors) Optimize preload, afterload, and contractility Optimize oxygenation/ventilation Decrease metabolic/oxygen demands (sedation, paralysis, fever management) Medications that slow conduction, decrease irritability (digoxin, calcium-channel blockers, beta-blockers, amiodarone, lidocaine, procainamide, adenosine, magnesium sulfate) 		 Treatment Remove vagal stimulus Administer positive chronotropic medications (epinephrine, dopamine, atropine) Pacemaker (transcutaneous, transvenous, permanent) Optimize oxygenation and ventilation 	

Preload

Normal • CVP • PAOP	Values: 2-8 mm Hg 6-12 mm Hg
Increased	Decreased
 Mechanism/Effect Increased myocardial muscle fiber stretch leads to increased ventricular blood volume, increased SV, increased CO, increased ventricular work Overstretched myocardial muscle fibers lead to decreased force of contraction, decreased SV, heart failure (Frank-Starling phenomenon) 	 Mechanism/Effect Decreased myocardial muscle fiber stretch from decreased circulating blood volume, decreased SV, decreased CO, vascular volume depletion, hypotension, cardiovascular collapse Increased volume corresponds with increased CO to a point of optimal stretch of myocardial muscle fibers
Causes • Decreased fluid excretion (kidney failure) • Excess fluid administration (fluid overload) • Ineffective cardiac pumping (right and left heart failure) • Aortic insufficiency • Vasoconstriction (alpha stimulation) • Inotropic medication • Pregnancy	 Causes Vascular volume loss (hemorrhage, diarrhea, vomiting, burns, edema, decreased intake, diuretics, third spacing) Vasodilatation (medications, septic shock) Pathological conditions (diastolic ventricular failure, mitral or tricuspid stenosis) Loss of atrial kick
Treatment Correct condition causing fluid volume retention/overload) Vasodilatation (see increased afterload) Diuretics Furosemide Bumetanide Mannitol Spironolactone Chlorothiazide Hydrochlorothiazide Metolazone Hemodialysis Continuous renal replacement therapy for fluid overload with kidney failure	Treatment Correct condition causing fluid volume loss Volume expansion Crystalloid - Saline - Lactated Ringer's Colloid - Albumin - Plasma - RBCs Vasoconstrictors (norepinephrine, dopamine, phenylephrine, epinephrine) may be used to correct severe hypotension when given in conjunction with fluid resuscitation

Afterload

Normal Values: • SVR 800-1,200 dynes sec/cm⁵ • PVR 150-250 dynes sec/cm⁵	Calculations: • SVR = [(MAP- CVP) / CO] x 80 • PVR = [(MPAP - PAOP) / CO] x 80
Increased	Decreased
 Mechanism/Effect Increased resistance to forward flow is related to increased atrial resistance, increased PVR and SVR, increased end-diastolic pressure, increased aortic impedance, increased blood viscosity, and increased aortic blood volume Increased resistance to forward flow leads to increased left ventricular stroke work, which leads to increased myocardial oxygen demands, which lead to increased left ventricular failure 	Mechanism/Effect • Decreased resistance to forward flow is related to decreased atrial resistance, decreased PVR and SVR, decreased end-diastolic pressure, decreased aortic impedance, decreased blood viscosity, and decreased aortic blood volume
Causes • Hypertension • Sympathetic stimulation • Peripheral vasoconstriction • Vasopressors • Aortic stenosis, pulmonic stenosis • Polycythemia • Medications/substances causing hypertensive effects (cocaine, amphetamines) • Hypothermia • High positive end-expiratory pressure • Increased ventricular-wall tension (dilation)	Causes • Vasogenic shock • Septic shock (early), endotoxin release • Anaphylactic shock • Neurogenic shock • Vasodilators • Medications causing hypotension (narcotics, antidepressants)
Treatment Reduce sympathetic stimulation Normalize body temperature Vasodilators Nitroglycerin Nitrogrusside Labetalol Amrinone Milrinone Hydralazine Enalapril, captopril, lisinopril Isosorbide IABP increases pumping ratio (1:1) Diuretics (see increased preload)	Treatment • Vasopressors • Epinephrine • Dopamine • Norepinephrine • Phenylephrine • Metaraminol • IABP decreases pumping ratio 1:2 or 1:4 • Volume expansion (see decreased preload) • Crystalloids • Colloids

Contractility

• SVI = 30-60 mL/beat/m ² • SVI = • RVSWI = 7-12 g/m ² /beat • RVSW	ulations: : CI/HR x 1000 WI = (MPAP - CVP) x SVI x 1000 x 0.0136 VI = (MAP - PAOP) x SVI x 1000 x 0.0136
Increased	Decreased
Mechanism/Effect • Increased contractile state of myocardium leads to increased force of contraction, which leads to increased SV, which leads to increased CO and myocardial oxygen demand	Mechanism/Effect • Decreased contractile state of myocardium leads to decreased force of contraction, which leads to decreased SV, which leads to decreased CO
Causes • Positive inotropic medications • Increased HR (Bowditch's law) • Sympathetic stimulation (beta ₁ receptor) • Electrolyte imbalance (hypercalcemia) • Toxic ingestion (digoxin) • Systemic inflammation	Causes • Negative inotropic medications • Parasympathetic stimulation (vagus nerve) • Hypoxia • Hypercapnia • Metabolic acidosis • Electrolyte imbalance • Cardiotoxic medications/substances (chemotherapy, salicylate overdose) • Toxin release (septic shock)
Treatment When positive inotropic effects are undesirable because of increased myocardial oxygen demand • Correct positive inotropic effects (correct calcium level, decrease sympathetic stimuli, decrease HR) • Negative inotropic medications • Beta-blockers • Calcium-channel blockers • Barbiturates • Correct toxic effect	Treatment • Correct negative inotropic effects (oxygen, ventilation, acid/base balance, electrolyte balance, remove vagal stimulus) • Positive inotropic medications • Dobutamine • Dopamine • Amrinone • Milrinone • Digoxin • Epinephrine • Calcium infusion • Optimize preload • Correct volume deficit • Correct volume excess

REFERENCES

Burns SM, Delgado SA, eds. *Essentials of Critical Care Nursing*. 4th ed. New York, NY: McGraw-Hill Education; 2019.

Good V, Kirkwood P, eds. Advanced Critical Care Nursing. 2nd ed. Philadelphia, PA: Elsevier; 2017. Hartjes T, ed. Core Curriculum for High Acuity, Progressive, and Critical Care Nursing. 7th ed. St Louis, MO: Elsevier; 2018.

Lough M. Hemodynamic Monitoring: Evolving Technologies and Clinical Practice. St Louis, MO: Elsevier; 2016.

Oxygenation

Normal Ranges:

SvO₂
 ScvO₂

60%-75% 70%-85%

 SvO_2 and $ScvO_2$ are measurements of the relationship between oxygen consumption and oxygen delivery in the body. They reflect the oxygen saturation returning from the body through the venous system. The 3 influencers of SvO_2 and $ScvO_2$ measurements are:

- Hemoglobin
- CO
- Metabolic demand/oxygen consumption

Conditions that decrease SvO ₂ (increase oxygen demand)	Medications that increase or decrease SvO ₂ * (increase oxygen demand)	Procedures that decrease SvO ₂ (increase oxygen demand)	Factors that increase SvO ₂ (decrease oxygen consumption)
 Minor surgery Fever Bone fracture Agitation Increased work of breathing Chest trauma Multiple organ failure Shivering Burns Sepsis Head injury 	 Norepinephrine Dopamine Dobutamine Epinephrine *Although these medications all increase oxygen demand, SvO₂ may increase as CO improves. 	 Dressing change Nursing assessment 12-lead ECG Visitors Bath Chest x-ray Endotracheal suctioning Turning Getting out of bed Nasal intubation 	 Hypothermia Sedation/ analgesia Anesthesia Assist/control ventilation Propranolol in head injury Neuromuscular blockade

Hemodynamic Alterations in Shock			
Parameter	Hypovolemic	Cardiogenic	Distributive
BP	\checkmark	\checkmark	\checkmark
CI	\checkmark	\checkmark	$\wedge \leftrightarrow$
CVP	\checkmark	$\wedge \leftrightarrow$	\checkmark
PAOP	$\downarrow \downarrow$	$\uparrow \uparrow$	\checkmark
SVR	\uparrow	\uparrow	$\checkmark \checkmark$
SvO ₂	\checkmark	\checkmark	\checkmark

Functional Hemodynamic Measurements

For patients receiving ventilatory support with a Vt > 6 mL/kg, using arterial pressure data from a bedside monitor during respiratory cycle, systolic pressure variation (SPV), pulse pressure variation (PPV), and stroke volume variation (SVV) can be calculated using the following equations:

Formulas			
Variable	Equation	Threshold for Responders	
SPV	SBPmax - SBPmin	> 10 mm Hg	
SPV %	[(SBPmax - SBPmin)/(SBPmax + SBPmin/2)] x 100	> 10%	
PPV %	[(PPmax - PPmin)/(PPmax + PPmin/2)] x 100	> 12.5%	
SVV %	[(SVmax - SVmin)/(SVmax + SVmin/2)] x 100	≥ 12%	
Pleth Variability Index (PVI)	Derived from oximeter perfusion index	12%-16%	

Simplified treatment algorithm based on functional hemodynamic parameters

Is there an indication of end-organ hypoperfusion or hemodynamic instability?

Measure functional indicator: SPV, PPV, SVV, PVI, PLR response

If functional indicator > threshold, give 500 mL fluid bolus over 15 min; reassess

Repeat boluses q15 min until functional indicator < threshold, then stop (monitor for congestion)

If functional indicator < threshold and vasopressor therapy still required, evaluate cardiac function

Legend: BP, blood pressure; BSA, body surface area; CI, cardiac index; CO, cardiac output; CR, classic reference; CVP, central venous pressure; HR, heart rate; IABP, intra-aortic balloon pump; LVSWI, left ventricular stroke work index; MAP, mean arterial pressure; MPAP, mean pulmonary artery pressure; PAOP, pulmonary artery occlusion pressure; PLR, passive leg raising; PVR, pulmonary vascular resistance; RVSWI, right ventricular stroke work index; SBP, systolic blood pressure; SV, stroke volume; ScvO2, central venous oxygen saturation; SVI, stroke volume index; SvO2, mixed venous oxygen saturation SVR. systemic vascular resistance; Vt. tidal volume